FUJITSU SEMICONDUCTOR DATA SHEET

FLASH MEMORY

CMOS

2 M ($256 \mathrm{~K} \times 8$) BIT

MBM29LV002T-12-x/MBM29LV002B-12-x

■ FEATURES

- Single 3.0 V read, program, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Uses same software commands as E²PROMs

- Package Option

40-pin TSOP (Package suffix: PTN - Normal Bend Type, PTR - Reversed Bend Type) 40-pin SON (Package suffix: PNS)

- Minimum 100,000 program/erase cycles
- High performance 120 ns maximum access time
- Sector erase architecture

One 16 Kbyte, two 8 Kbytes, one 32 Kbyte, and three 64 Kbytes.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready-Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switches themselves to low power mode.

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Sector protection

Hardware method disables any combination of sectors from program or erase operations.
(Continued)

- Temporary sector unprotection

Hardware method enables temporarily any combination of sectors from program or erase operations.

- Extended operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Please refer to "MBM29LV002T/MBM29LV002B" in detailed specifications.

PACKAGE

40-pin plastic TSOP (I)

GENERAL DESCRIPTION

The MBM29LV002T-X/B-X are a 2M-bit, 3.0 V-only Flash memory organized as 256 K bytes of 8 bits each. The MBM29LV002T-X/B-X are offered in 40-pin TSOP (I) and 40-pin SON packages. These devices are designed to be programmed in-system with the standard system 3.0 V Vcc supply. 12.0 V VPP and 5.0 V Vcc are not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers.
The MBM29LV002T-X/B-X offer access time 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the devices have separate chip enable (CE), write enable (WE), and output enable (OE) controls.
The MBM29LV002T-X/B-X are pin and command set compatible with JEDEC standard E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the devices is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The MBM29LV002T-X/B-X are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

A sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)
These devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LV002T-X/B-X are erased when shipped from the factory.

The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and requlated voltages are provided for the program and erase operations. A low V_{cc} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ_{6}, or the RY/BY output pin. Once the end of a program or erase cycle has been completed, the devices internally reset to the read mode.
Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29LV002T-X/B-X memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 Kbyte, two 8 Kbytes, one 32 Kbyte, and three 64 Kbytes.
- Individual-sector, multiple-sector, or bulk-erase capability.
- Individual or multiple-sector protection is user definable.

16 Kbyte	3FFFFH 3BFFFH
8 Kbyte	
8 Kbyte	
32 Kbyte	
64 Kbyte	
64 Kbyte	
64 Kbyte	
	00000H

64 Kbyte	$\begin{aligned} & 3 F F F F H \\ & 2 F F F F H \end{aligned}$
64 Kbyte	
64 Kbyte	
32 Kbyte	
8 Kbyte	
8 Kbyte	
16 Kbyte	

MBM29LV002T-X Sector Architecture
MBM29LV002B-X Sector Architecture

BLOCK DIAGRAM

PRODUCT LINE UP

Part No.	MBM29LV002T-X/MBM29LV002B-X	
Ordering Part No.	$V_{c c \mid}=3.0 \mathrm{~V}_{-0.3 \mathrm{~V}}^{+0.6 \mathrm{~V}}$	$-12-\mathrm{X}$
Max. Address Access Time (ns)	120	
Max. CE Access Time (ns)	120	
Max. OE Access Time (ns)	50	

CONNECTION DIAGRAMS

TSOP (I)

FPT-40P-M06

A_{1}	$20 \bigcirc$ 19	(Marking Side)	21	$\square \frac{\mathrm{A}_{0}}{\mathrm{CE}}$
	19		22	$\square \mathrm{Vss}$
$\mathrm{A}_{4}{ }^{\text {a }}$	17		24	OE
A_{5}	16		25	$\square \mathrm{DQ}_{0}$
A_{6}	15		26	$\square \mathrm{DQ}_{1}$
A_{7}	14		27	DQ2
A_{18}	13		28	$\square^{\text {DQ }}$
RY/BY \square	12		29	\square N.C
N.C. \square	11	MBM29L V004T-X/MBM29L V004B-X	30	$\square \mathrm{Vcc}$
RESET \square	10	MBM29LV004T-X/MBM29LV004B-X	31	$\square \mathrm{Vcc}$
WE \square	9		32	$\square \mathrm{DQ}_{4}$
A_{8}	8		33	$\square \mathrm{DQ}_{5}$
A9 \square	7		34	$\square \mathrm{DQ}_{6}$
$\mathrm{A}_{11} \square$	6		35	$\square \mathrm{DQ}_{7}$
$\mathrm{A}_{12} \square$	5		36	- A_{10}
$\mathrm{A}_{13} \square$	4		37	\square N.C.
$\mathrm{A}_{14} \square$	3		38	\square N.C.
$\mathrm{A}_{15} \square$	2		39	$\checkmark \mathrm{Vss}$
$\mathrm{A}_{16} \square$	1		40	$\square \mathrm{A}_{17}$

FPT-40P-M07

LOGIC SYMBOL

Table 1 MBM29LV002T-X/002B-X Pin Configuration

ORDERING INFORMATION

Industrial Devices

Fujitsu industrial devices are available in two packages. The order number is formed by a combination of:
MBM29LV002

DEVICE NUMBER/DESCRIPTION
MBM29LV002
2M-bit ($256 \mathrm{~K} \times 8$-bit) CMOS Flash Memory
3.0 V-only Read, Program, and Erase

ABSOLUTE MAXIMUM RATINGS

```Storage Temperature
                \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Ambient Temperature with Power Applied ................................................................. \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Voltage with Respect to Ground All Pins except As, OE, and RESET (Note 1) .......... -0.5 V to \(+\mathrm{Vcc}+0.5 \mathrm{~V}\)
Vcc (Note 1) .............................................................................................................. 0.5 V to +5.5 V
A9, DE, RESET (Note 2) ........................................................................................... 0.5 V to +13.0 V
```

Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $\mathrm{A}_{9}, \overline{O E}$, and RESET pins are -0.5 V . During voltage transitions, $\mathrm{A}_{9}, \overline{O E}$, and RESET pins may negative overshoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on $\mathrm{A}_{\mathrm{s}}, \overline{\mathrm{O}}$, and RESET pins are +13.0 V which may positive overshoot to 14.0 V for periods of up to 20 ns.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING RANGES
Industrial Devices
Ambient Temperature (TA) .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Vcc Supply Voltages +2.7 V to +3.6 V

Recommended operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

Figure 1 Maximum Negative Overshoot Waveform

Figure 2 Maximum Positive Overshoot Waveform

*: This waveform is applied for $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{RESET}}$.

Figure 3 Maximum Positive Overshoot Waveform

DC CHARACTERISTICS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
ILI	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc, }} \mathrm{V}_{\text {cc }}=\mathrm{V}_{\mathrm{cc}}$ Max.	-1.0	+1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {ss }}$ to V_{cc}, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$.	-1.0	+1.0	$\mu \mathrm{A}$
ІІт	Aя, OE, RESET Inputs Leakage Current	$\begin{aligned} & V_{c c}=V_{c c} \text { Max., } \\ & A_{9}, O E, R E S E T=12.5 \mathrm{~V} \end{aligned}$	-	80	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 1)	$\overline{C E}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$	-	30	mA
Icc2	V cc Active Current (Note 2)	$\overline{C E}=\mathrm{V}_{\text {IL }}, \overline{O E}=\mathrm{V}_{\mathrm{H}}$	-	35	mA
Icc3	Vcc Current (Standby)	```Vcc = Vcc Max., CE = Vcc }\pm0. V, RESET = Vcc }\pm0.3\textrm{V```	-	50	$\mu \mathrm{A}$
Icc4	Vcc Current (Standby, Reset)	$\begin{aligned} & \text { Vcc = Vcc Max., } \\ & \text { RESET }=\text { Vss } \pm 0.3 \mathrm{~V} \end{aligned}$	-	50	$\mu \mathrm{A}$
VIL	Input Low Level	-	-0.5	0.6	V
V_{H}	Input High Level	-	2.0	$\mathrm{Vcc}+0.3$	V
VID	Voltage for Autoselect and Sector Protection/Temporary Sector Unprotection (Aя, OE, RESET)	-	11.5	12.5	V
VoL	Output Low Voltage Level	$\mathrm{loL}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.	-	0.45	V
Voh1	Output High Voltage Level	$\mathrm{IOH}^{\prime}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.	2.4	-	V
Voh2		$\mathrm{loh}=-100 \mu \mathrm{~A}, \mathrm{~V}$ cc $=\mathrm{V}$ cc Min.	Vcc-0.4	-	V
Vıko	Low Vcc Lock-Out Voltage	-	2.3	2.5	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$, with OE at V_{I}.
2. Icc active while Embedded Algorithm (program or erase) is in progress.

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		$\begin{gathered} -12-X \\ \text { (Note) } \end{gathered}$	Unit
JEDEC	Standard					
tavav	trc	Read Cycle Time	-	Min.	120	ns
tavav	tacc	Address to Output Delay	$\begin{aligned} & C E=V_{I L} \\ & O E=V_{I L} \end{aligned}$	Max.	120	ns
telav	tce	Chip Enable to Output Delay	$\overline{O E}=\mathrm{V}_{\text {IL }}$	Max.	120	ns
tgLov	toe	Output Enable to Output Delay	-	Max.	50	ns
tehaz	tDF	Chip Enable to Output High-Z	-	Max.	30	ns
tghaz	tDF	Output Enable to Output High-Z	-	Max.	30	ns
taxax	toн	Output Hold Time From Addresses, CE or OE, Whichever Occurs First	-	Min.	0	ns
-	tready	RESET Pin Low to Read Mode	-	Max.	20	$\mu \mathrm{s}$

Note: Test Conditions: Output Load: 1 TTL gate and 100 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level

Input: 1.5 V
Output: 1.5 V

Notes: $\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance

Figure 4 Test Conditions

MBM29LV002T-12-x/MBM29LV002B-12-x

- Write/Erase/Program Operations

Alternate WE Controlled Writes

Parameter Symbols		Description			-12-X	Unit
JEDEC	Standard					
tavav	twc	Write Cycle Time		Min.	120	ns
tavwL	tAs	Address Setup Time		Min.	0	ns
twlax	$\mathrm{t}_{\text {AH }}$	Address Hold Time		Min.	50	ns
tovw	tos	Data Setup Time		Min.	50	ns
twhox	toh	Data Hold Time		Min.	0	ns
-	toes	Output Enable Setup Time		Min.	0	ns
-	tоен	Output Enable Hold Time	Read	Min.	0	ns
			Toggle and Data Polling	Min.	10	ns
tghw	tghw	Read Recover Time Before Write		Min.	0	ns
telwl	tcs	CE Setup Time		Min.	0	ns
twher	tch	CE Hold Time		Min.	0	ns
twhwh	twp	Write Pulse Width		Min.	50	ns
twhwL	twpH	Write Pulse Width High		Min.	30	ns
twhwh	twhwh 1	Byte Programming Operation		Typ.	8	$\mu \mathrm{s}$
twhwH2	twhwH2	Sector Erase Operation (Note 1)		Typ.	1	sec
-	tvcs	Vcc Setup Time		Min.	50	$\mu \mathrm{s}$
-	tvLht	Voltage Transition Time (Note 2)		Min.	4	$\mu \mathrm{s}$
-	twpp	Write Pulse Width (Note 2)		Min.	100	$\mu \mathrm{s}$
-	toesp	OE Setup Time to WE Active (Note 2)		Min.	4	$\mu \mathrm{s}$
-	tcsp	CE Setup Time to WE Active (Note 2)		Min.	4	$\mu \mathrm{s}$
-	trb	Recover Time From RY/BY		Min.	0	ns
-	trp	RESET Pulse Width		Min.	500	ns
-	$t_{\text {RH }}$	RESET Hold Time Before Read		Min.	500	ns
-	tBusy	Program/Erase Valid to RY/BY Delay		Min.	90	ns

Notes: 1. This does not include the preprogramming time.
2. These timings are for Sector Protection operation.

- Write/Erase/Program Operation

Alternate CE Controlled Writes

Parameter Symbols		Description			-12-X	Unit
JEDEC	Standard					
tavav	twc	Write Cycle Time		Min.	120	ns
tavel	tas	Address Setup Time		Min.	0	ns
telax	tah	Address Hold Time		Min.	50	ns
toveh	tos	Data Setup Time		Min.	50	ns
tehdx	toh	Data Hold Time		Min.	0	ns
-	toes	Output Enable Setup Time		Min.	0	ns
-	toer	Output Enable Hold Time	Read	Min.	0	ns
			Toggle and Data Polling	Min.	10	ns
tghel	tghel	Read Recover Time Before Write		Min.	0	ns
twlel	tws	WE Setup Time		Min.	0	ns
terwh	twh	WE Hold Time		Min.	0	ns
teleh	tcp	CE Pulse Width		Min.	50	ns
tehel	tcp	CE Pulse Width High		Min.	30	ns
twHWH1	twhwH1	Byte Programming Operation		Typ.	8	$\mu \mathrm{s}$
twHWH2	twHWH2	Sector Erase Operation (Note)		Typ.	1	sec
-	tvcs	Vcc Setup Time		Min.	50	$\mu \mathrm{s}$
-	trB	Recover Time From RY/BY		Min.	0	ns
-	trp	RESET Pulse Width		Min.	500	ns
-	tre	RESET Hold Time Before Read		Min.	500	ns
-	tBusy	Program/Erase Valid to RY/BY Delay		Min.	90	ns

Note: This does not include the preprogramming time.

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comment
	Min.	Typ.	Max.		sec
Sector Erase Time	-	1	Excludes programming time prior to erasure		
Byte Programming Time	-	8	3,600	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	2.1	T.B.D	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	Cycles	

TSOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7	8	pF
Cout^{2}	Output Capacitance	$\mathrm{V}_{\text {ouT }}=0$	8	10	pF
$\mathrm{C}_{\mathbb{N} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	9	11	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SON PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7	8	pF
Cout $^{\text {CIN } 2}$	Output Capacitance	Vout $=0$	8	10	pF
	Control Pin Capacitance	$\mathrm{V}_{\mathbb{I N}=0}$	9	11	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

